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Abstract Objective: We aim to evaluate the potential interaction of two insect hemolymph 

peptides, MDF3 and MDF4, with the human androgen receptor, on the premise that the 

proliferative effects of the two peptides are (at least in part) a consequence of AR binding. 

Methods: We employed a bioinformatic approach for the prediction of protein-peptide 

interaction and peptide aggregation, using various in silico on-line tools such as docking 

servers, aggregation prediction servers and visualization and analysis software in order to 

evaluate our results. 

Results: Our evaluation indicates that MDF3 and MDF4 interact with the androgen 

human androgen receptor by binding to a helix shown to be involved the receptor 

dimerization. Out of the two peptides, MDF3 appears to form a more extensive bond network 

with the receptor.  

Conclusion: Our analysis indicates that MDF 3 and 4 may be able to activate the human 

androgen receptor and warrant further investigation of the potential effect on receptor 

function. MDF3 appears to be the most promising out of the two peptides and its interaction 

should be further evaluated by both computational and experimental methods. 
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Introduction 

Peptides represent short chains, with a variable length 

between 2 and 50 aminoacids. Peptide therapeutics have 

played a notable role in medical practice since the 1920s 

(VECCHIO, TORNALI, BRAGAZZI, MARTINI, 2018). 

A growing number of peptide drugs are approved in the US 

and other major markets, and peptides continue to enter 

clinical development. Peptide drug discovery has diversi-

fied beyond its traditional focus on endogenous human 

peptides to include a broader range of structures identified 

from other natural sources or through medicinal chemistry 

efforts (LAU, 2018). Entomological peptides from the 

hemolymph represent an area of increased interest, 

showing numerous therapeutic benefits and has resulted  

in the field of pharma-entomology. 

Based on the number of species, insects offer twice 

the biodiversity of plants and microorganisms put 

together. If we consider that almost half the drugs currently 

on the market are derived from plants or micro-organisms, 

insects can represent a significant untapped source of novel 

therapeutics (DIMARCQ, 2003). 

Lymanthria Dispar peptides represent a potential 

source for therapeutic peptides: extensive work on insects 

was done by Loeb’s group, to identify a number of 

peptides present in the hemolymph, brain and testis.  

Among these are ecdysiotropin, a peptide indentified  

for the first time in pupae brains (MEOLA, LOEB, 

KOCHANSKY, WAGNER et al, 1997; LOEB, 

KOCHANSKY, WAGNER, WOODS et al, 1998), 

midgut differentiation factors (MDFs) 1 and 2 (LOEB, 

1999) and midgut differentiation factors 3 and 4. Among 

various peptides, Lymantria dispar pupae hemolymph 

contains MDF 3 and 4 which have been shown to promote 

stem cell differentiation, with a peak activity detected  

at 106 M (MDF3, with the corresponding aminoacid 

sequence: EEVVKNAIA) and 108 M (MDF4, with the 

corresponding aminoacid sequence: ITPTSSLAT), res-

pectively, falling within the physiological range for 

bioactivity (LOEB, 2002). 

The human androgen receptor is a type of nuclear 

receptor, well known for its involvement in cell pro-

liferation and differentiation (LUCAS, NASCIMENTO, 

PISOLATO, PIMENTA et al, 2014). Other insect growth 

factors, such as ecdysone and 20-ecdysone have been 

shown to have anabolic and proliferative effects, possibly 

mediated by interaction with the androgen receptor, in the 

absence of the ecdysteroid receptor, and ecdysone has 

been shown activate the mineralocorticoid receptor (LU, 

WANG, GE, DWORKIN et al, 2018). Wound-healing 

effects of ecdysteroids have also been described, with  

20-ecdysone in liposomes shown to shorten the duration  

of skin repair after superficial wounding and stimulation  

of keratinocyte differentiation in vitro (LAFONT, 2003). 

Anabolic effects on rats were also reported (SYROV, 

2000) along with growth-promoting effects in pigs 

(KRATKY, 1997) and Japanese quails (KOUDELA, 

TENORA, BAJER, MATHOVA et al, 1995; SLÁMA, 

KOUDELA, TENORA, MATHOVÁ, 1996). 

Considering that Lymanthria is a rich source for 

bioactive substances, of which ecdysones are biologically 

active in humans, we aim to evaluate the potential 

interaction of MDF3 and MDF4 peptides with the human 

androgen receptor, on the premise that the proliferative 

effects are (at least in part) a consequence of AR binding. 

To this end, we employed in silico docking methods to 

asses if the two peptides bind in a region relevant to AR 

activation. 
 

Materials and Methods 

The crystal structure of the human androgen receptor 

binding domain was obtained from the PDB database 

(BERMAN, WESTBROOK, FENG, GILLILAND et al, 

2000) (PDB code: 2AMA). The structure was chosen 

because of the good sequence coverage, good resolution 

and lack of mutations. 

The primary sequences of the two peptides were 

obtained from the literature (Loeb et al, 2002) and were 

submitted to the PEP-FOLD server (THÉVENET, SHEN, 

MAUPETIT, GUYON et al, 2012), in order to generate 

corresponding tri-dimensional structures. The best models 

were further submitted to Z-DOCK 3.0.2 web server 

(PIERCE, 2011), in order to obtain structures of the 

complexes.  

The structures with the best Z-scores were refined 

using the FlexPEP Dock webserver (London, Raveh, 

Cohen, Fathi et al, 2011), in order to account for inherent 

peptide flexibility. The results were further evaluated for 

the presence of hydrogen bonds, hydrophobic, ionic and 

aromatic interactions, using PIC (Protein interaction 

calculator), (TINA, 2007). 

Further, we evaluated the aggregation propensity for 

both our peptides, using the PASTA webserver (WALSH, 

SENO, TOSATTO, TROVATO, 2014). Visualization was 

performed with Molsoft ICM Browser (FERNANDEZ-

RECIO, 2002) and Pymol (The PyMOL Molecular 

Graphics System, Version 0.99rc6, Schrödinger, LLC.). 
 

Results 

Our results show that the two peptides tend to adopt  

a helical conformation and bind a helix located on the 

ligand binding domain of the AR. The interactions between 

the two peptides and corresponding helix are mediated  

by a series of hydrogen bonds and other interactions 

(hydrophobic and ionic in the case of MDF3 and 

hydrophobic in the case of MDF4). Neither peptide is 

predicted to form aggregates. Structurally, both peptides 

are predicted to be intrinsically disordered, based on 

primary sequence analysis. However, MDF3 is predicted  

to have some residual secondary structure (see Discussion 

section below and Table 3). 
 

Discussion 

The protein–protein interface formed during AR 

dimerization is stabilized by numerous aminoacid inter-

actions, some of which are located in the alpha-helix 
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interacting with our peptides (NADAL, PREKOVIC, 

GALLASTEGUI, HELSEn et al, 2017), that could lead to 

the potential inhibition of receptor dimerization. Targeting 

the AR dimerization has been indicated as a potential 

therapy for prostate cancer (DALAL, BAN, LI, MORIN  

et al, 2018). 

MDF3 interacts with the AR receptor by forming  

a series of hydrogen bonds, hydrophobic interactions and 

an ionic interaction (see Tables 1, 2 and 3 and Figure 2) 

while MDF4 interacts by forming a hydrogen bond and  

a series of hydrophobic contacts with the AR (see Table 3). 

This could be partially explained by the fact that MDF4  

is predicted to be 100% random coil, while MDF3 is 

predicted to be 66% alpha-helix and 33% random coil, 

thus facilitating ligand-receptor interaction in a more 

stable manner, as opposed to a more transient interaction  

in the case of MDF4 (see Table 5). 

 

 

   

Figure 1. Figure representing the tri-dimensional structures of the MDF3 peptide (left) and the complex 

formed between MDF3 and the androgen receptor (right). 

 

 
Table 1. Hydrogen bonds formed between donor-acceptor aminoacid pairs  

of the MDF3 peptide and the androgen receptor 

Protein-Protein Side Chain-Side Chain Hydrogen Bonds 

DONOR ACCEPTOR PARAMETERS 

POS CHAIN RES ATOM POS CHAIN RES ATOM MO Dd-a Dh-a A(d-H-N) A(a-O=C) 

836 A LYS NZ 6 - ASN ND2 - 3.06 9.99 999.99 999.99 

2 - GLU OE1 832 A MET SD 1 3.71 3.2 110.41 999.99 

2 - GLU OE1 832 A MET SD 2 3.71 4.71 16.48 999.99 

2 - GLU OE2 832 A MET SD 1 2.55 1.64 139.02 999.99 

2 - GLU OE2 832 A MET SD 2 2.55 2.94 58.03 999.99 

6 - ASN ND2 832 A MET SD 1 3.89 3.36 112.18 999.99 

6 - ASN ND2 832 A MET SD 2 3.89 3.59 98.88 999.99 

 

 

 

Figure 2. Detailed view of a few representative hydrogen bonds formed between MDF3 and the androgen receptors. 
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Table 2. Hydrophobic interactions formed between the androgen receptor and MDF3 

Hydrophobic Interactions within 5 Angstroms 

Position Residue Chain Position Residue 

832 MET A 3 VAL 

835 ILE A 3 VAL 

835 ILE A 7 ALA 

856 PHE A 7 ALA 

856 PHE A 8 ILE 

856 PHE A 9 ALA 

914 ILE A 4 VAL 

916 PHE A 4 VAL 

916 PHE A 7 ALA 

916 PHE A 8 ILE 

 

 

 

Table 3. Ionic interactions formed between the androgen receptor and MDF3 

Ionic Interactions within 6 Angstroms 

Position Residue Chain Position Residue 

836 LYS A 2 GLU 

 

 

 

       

Figure 3. Figure representing the tri-dimensional structures of the MDF3 peptide (left) and the complex 

formed between MDF4 and the androgen receptor (right). 

 

 

 

Table 4. Hydrogen bonds formed between donor-acceptor aminoacid pairs  

of the MDF4 peptide and the androgen receptor 

Protein-Protein Mine Chain-Side Chain Hydrogen Bonds 

DONOR ACCEPTOR PARAMETERS 

POS CHAIN RES ATOM POS CHAIN RES ATOM MO Dd-a Dh-a A(d-H-N) A(a-O=C) 

860 A THR OG1 9 - THR OXT - 3.41 9.99 999.99 114.84 
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Table 5. Hydrophobic interactions formed between the androgen receptor and MDF4 

Hydrophobic Interactions within 5 Angstroms 

Position Residue Chain Position Residue 

832 MET A 3 PRO 

835 ILE A 3 PRO 

914 ILE A 1 ILE 

916 PHE A 1 ILE 

 

 

Aggregation prediction 

Considering that the peptides analysed here may 

hold therapeutic benefit, we evaluated their aggregation 

potential. This is an important factor when considering 

heterologous expression, but also in the context of 

preparative chromatographic purification. 

 

 
Table 6. Aggregation propensity of MDF3 and MDF4, along with disorder and secondary structure prediction 

Peptide name length # amyloids best energy % disorder % α-helix % β-strand % coil 

MDF3 9 0 -4.119255 100 66.67 0 33.33 

MDF4 9 0 -0.237392 100 0 0 100 

 

 

Limitations 

We acknowledge that our in silico evaluation has 

certain limitations, mainly as a consequence of the inhe-

rent dynamical nature of proteins and protein-protein 

interactions. Further simulation of the AR receptor dimer, 

both in complex with the peptides and alone, is warranted 

in order to provide a better understanding of the con-

sequences of peptide binding. This, most likely, would 

involve extensive molecular dynamics simulations. Also, 

we must consider the fact that, regardless of how refined 

the simulation protocols would be, any such results 

would have to be experimentally validated. 

 

Conclusions 

Our analysis indicates that MDF 3 and 4 may be 

able to activate the human androgen receptor and warrant 

further investigation of the potential effect on receptor 

function. MDF3 appears to be the most promising out  

of the two peptides and its interaction should be further 

evaluated by both computational and experimental 

methods. 
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