The impact of virtual reality training on laparoscopic surgical skills; A prospective blinded controlled trial

Prashanth A T1*, Nishanth Lakshmikantha2, Krish Lakshman2

1 Sagar Hospital, Department of General Surgery, Jayanagar, Bangalore, Karnataka, India
2 Shanthi Hospital and Research Centre (SHRC), Jayanagar, Bangalore, Karnataka, India

ABSTRACT

Background. Laparoscopic surgery has gained popularity in the last few decades replacing open standard techniques in several procedures. While its use and scope expand, a standardized method of training and assessment in laparoscopic skills is lacking. Aim. To assess the effect of virtual reality (VR) training on laparoscopic surgical skills. Materials and Methods. It is a prospective, controlled study conducted at Sagar Hospital’s skill lab and Shanthi Hospital and Research Centre (SHRC). We included 27 post graduates in general surgery. They were divided into two groups. One group underwent training in VR Simulator for one week, 30 minutes each day. The second group received no training. Their proficiency while mobilizing the Gallbladder from its liver bed was assessed using a validated scale by a single blinded observer. Results. The statistical analysis was done using a non-parametric test (Mann-Whitney U test). Residents who underwent training in VR simulator got better scores in Overall rating and also in individual parameters when compared with the control group (P = <0.05). Conclusions. Laparoscopic surgical skills can be increased by using proficiency-based VR simulator training and it can be transferred to actual operations. VR simulators are a valid tool for laparoscopic surgical skills training.

Introduction

Laparoscopic surgery has gained popularity in the last few decades replacing open standard techniques in several procedures [1-3]. This is mainly because of the advantages that laparoscopic surgery offers like minimal surgical trauma, early postoperative recovery, shorter hospitalization and better cosmetic results [4]. Learning laparoscopic surgical skills is different when compared to open surgical skills, as it requires hand eye coordination and accommodation for lack of depth perception with 2D vision. It requires proper and extensive training to become competent in laparoscopic surgery. Learning laparoscopic techniques at an actual surgery is time consuming and can be a safety concern for patients [5,6].

There are various training modules available to acquire laparoscopic skills outside the operation theatre like box trainer, Virtual Reality (VR) simulator, animal models, cadaver models, to name a few. Training on these modules helps in acquiring basic laparoscopic skills. Among them, only VR and Augmented Reality simulators provide objective metrics and real time feedback to trainees [7]. Although VR simulation offers many advantages to a trainee for developing new skills and learning new procedures, evidence on skill transfer from simulator to operation theatre is still limited [8,9]. We investigated the impact of VR simulator training on laparoscopic surgical skills in a commonly performed laparoscopic procedure, such as laparoscopic cholecystectomy. The investigation was carried out as a prospective, observer blinded, controlled trial, according to the guidelines of the consolidated standards of reporting trials (CONSORT), which is presented in Figure 1.

The aim of the present study was to investigate whether laparoscopic skills acquired in a virtual environment could be transferred to actual operations, and therefore to validate the role of VR simulation as a tool for surgical skills training.

Keywords: Laparoscopic training, Virtual Reality simulator, Novice’s training, Surgical training, Laparoscopic cholecystectomy

*Corresponding author:
Dr Prashanth A T,
Lakshmi Venkateshwara Nilaya, Mandara Road, Gokula Extension, Tumkur, Karnataka, India 572104
E-mail: prashanth@gmail.com

Materials and Methods

It is a prospective, blinded, controlled study conducted at Sagar Hospital’s skill lab and Shanthi Hospital and Research Centre (SHRC). The study was conducted between December 2019 and April 2020. The study protocol was approved by the hospital ethics committee.

We included in our study 27 residents from the department of General Surgery, with limited laparoscopic experience. We defined surgical residents with limited laparoscopic experience as those who have helped senior surgeons in laparoscopic operations by no more than holding the camera, with no experience in laparoscopic dissection. The residents were then allotted by the principal investigator to either an intervention group that received training in a VR simulator or a control group that did not receive any training. The randomization was not possible because of the practical difficulty in consistently getting residents for the study.

Simulator training

The residents in the intervention group were given an oral introduction to the VR simulator and a demonstration of the training exercises to be carried out. The intervention group undertook a specific training programme in the VR simulator (BIGSOLV Laparo simulator, Sri Dutt Technologies, Bengaluru, India). The programme comprised basic surgical skill tasks which are described in detail below. The tasks were of progressive complexity. The intervention group underwent training in VR Simulator for one week, 30 minutes a day. Figure 2 shows the images of the various tasks as seen in the VR simulator.

In Task 1, Pointing dots – trainee had to move the tool sequentially from 1 to 10. In Task 2, Joining straight lines – the tool had to be moved sequentially from 1 to 10 along the straight path provided. In Task 3, Joining curved lines – the tool had to be moved along the curved path provided. For Tasks 1, 2 and 3, a needle tool was used and these tasks were mainly aimed at improving the hand to eye coordination.

In Task 4, Picking objects - This task basically consisted of a couple of cubes and a bowl. The trainee was supposed to pick up the cube using the tool and transfer it into the bowl. In Task 5, Peg transfer – It consisted of a torus and a peg and the trainee was asked to pick up the torus using the tool and transfer it over the peg. For Tasks 4 and 5, a grasper tool was used and these tasks were aimed at giving the user a higher degree of hand to eye coordination, compared to Tasks 1 to 3, with respect to handling objects in a 3D space.

In Task 6, Tissue cutting – In this task, a section of the tissue highlighted in yellow had to be cut using a scissor. In Task 7, Tissue cauterization – this task was aimed at giving the trainee a feel of using both hands and feet while performing surgery. Needle and footswitch were used here. The tool tip was ‘heated’ by means of applying some pressure on a switch that was controlled by the surgeon’s feet and the tooltip had to be moved over the marked area on a virtual tissue thus denoting cauterization.

Figure 1. CONSORT diagram of the trial
In Task 8, Stone removal – This task involved the use of two tools, a grasper and an endobag. The grasper was used to pick the ‘gallstone’ and the endo bag was used to collect the gallstone that had been picked up. This task also provided an enhanced visualization of the environment that surgeons encounter within the human body. Various tools used in VR training were depicted in Figure 3.

![Figure 2. Images of the various tasks as seen in the VR simulator](image)

Figure 2. Images of the various tasks as seen in the VR simulator

<table>
<thead>
<tr>
<th>Tool</th>
<th>Name</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle</td>
<td>Pointing the object / Thermal Control.</td>
<td></td>
</tr>
<tr>
<td>Grasper</td>
<td>Grasping the Object.</td>
<td></td>
</tr>
<tr>
<td>Scissor</td>
<td>Cutting</td>
<td></td>
</tr>
<tr>
<td>Endo Bag</td>
<td>Remove the Stones.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Tools used in the VR training

Assessment

All the residents included in the study were assessed consistently by an experienced surgeon who was blinded to the training status of the residents. All the residents were shown the video of laparoscopic cholecystectomy before assessment. Their task of having to dissect the gallbladder off the liver bed was explained to them. This part of Laparoscopic Cholecystectomy following dissection of Calot’s triangle and clipping and cutting the cystic duct and artery was chosen to maximize safety to the patient. The senior surgeon was always scrubbed in and supervised the novice closely during this dissection.

The assessment was done using the modified global rating scale of the OSATS (Objective Structured Assessment of Technical Skills) [10] which is shown in (Table 1). The candidates were given scores of 1-5 for each parameter based on his/her performance. Under time and motion parameter, to make scoring more objective, the scoring was based on 3 factors: 1. whether the candidate reached the intended point of dissection, 2. whether the path to the target was straight and 3. the speed of reaching the target. Each of these 3 factors was considered as a 5-point scale and the average of those three scores were taken as the time and motion parameter score.

Statistical analysis

Data was presented as cumulative scores as medians and compared using nonparametric analysis (Mann-Whitney U test). We considered a P value of 0.05 or less to be statistically significant. Data was analyzed using SPSS 20.0 (Statistical Package for the Social Sciences) software package for Windows.

Results

Out of 27 residents, 14 were allocated to the intervention group and 13 were allocated to the control group. All residents in both groups successfully completed the Gallbladder dissection from the liver bed. The observer blinding was lost in three residents from the intervention group because of the inadvertent disclosure of their training status. However, they were included in the final analysis to keep with the intention to treat protocol.
The median total score obtained on the modified global rating scale of operative performance was 23 in the intervention group and 15 in the control group. The scores were statistically significant ($P = 0.001$). If we look at the individual parameters of the modified global rating scale, the intervention group performed well in all the parameters when compared with the control group and the results were statistically significant (P value <0.05). Figures 4 and 5 depict the comparison between the overall scores and individual parameters of the OSATS scale in the two groups respectively.

Discussion

Laparoscopic surgery has gained popularity in the last few decades replacing open standard techniques in several procedures because of the advantages well known to all of us. While its prevalence expands, the need for reliable training and assessment tools are lacking. Laparoscopic surgery requires a different set of skills when compared to open surgery due to the fact that laparoscopic surgery needs good hand eye coordination, good manual dexterity to use long instruments and also adjusting for lack of 3D vision [11]. It's always better to acquire these skills outside the operating room.
the operation theatre through training modules to avoid a steeper learning curve, save time in the operation theatre and also to lessen the risk to the patient.

Figure 4. Box plot comparison between the overall scores of the OSATS scale in the two groups respectively

![Box plot comparison between the overall scores of the OSATS scale in the two groups respectively](image)

Figure 5. Box plot comparison between the individual parameters of the OSATS scale in the two groups respectively

![Box plot comparison between the individual parameters of the OSATS scale in the two groups respectively](image)

There are various training modules available for laparoscopic surgery. VR simulator training is one such method of laparoscopic training which is aimed at improving basic and advanced surgical skills and also it provides objective assessment. Our study has shown that, at a novice level, VR simulator training does improve basic surgical skills and these skills can be transferred to tissue dissection capability at an operation. Other studies have shown that skills obtained through VR simulator training can be transferred to operating room [12-17]. A systematic review published by Gurusamy et al. involving 622 participants in 22 trials concluded that VR simulator training, when compared to other modules of training, improves standard surgical training in surgical trainees [18].

A valid and reliable assessment tool is also needed to document surgical skills training programs. The OSATS shows promise as a tool for assessing the technical skill of surgical trainees [19]. The OSATS scale used in our study had 7 parameters. Among them 2 parameters, i.e, use of assistants and knowledge of the specific procedure had no relevance to training in a VR simulator as it doesn’t help in acquiring those skills. But the intervention group scored better in these parameters as well. It was a surprise that the candidates did well even in those categories which were not influenced by the VR simulation and we can only surmise that this was secondary to a boost in confidence of the trainee and probably can be considered as a serendipitous advantage of a VR simulator training.

However, our study had some limitations. Scoring of performance in the operating room was subjective, although the impact of this was minimized by blinding the assessor and using the objective scoring criteria. In addition, our sample size was small and we may need a larger trial to confirm the present findings.

Conclusions

To conclude, our study provides objective evidence that training with the VR simulator does improve surgical operative performance. Thus, skills in laparoscopic surgery can be increased by using proficiency-based VR simulator training and it can be transferred to actual operations. VR simulators are a valid tool for laparoscopic surgical skills training and could be incorporated into surgical training programs.

Conflict of interest disclosure

There are no known conflicts of interest in the publication of this article. The manuscript was read and approved by all authors.

Compliance with ethical standards

Any aspect of the work covered in this manuscript has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Acknowledgments

The authors are grateful to Medical Education and Research Trust (MERT), Bengaluru for their help with procuring VR trainer; Sri Dutt technologies, Bengaluru for providing BIGSOLV Laparo simulator; Department of surgery Heads in various institutes across Bengaluru, Dr Ravishankar H R, Dr Satish Kumar, Dr Arun Kumar and Dr Akhil K Bhat for allowing their residents to participate in the study; Dr Rajashekkara Reddy H V, Director of Clinical Skills Centre, Bengaluru for allowing the preliminary work in skills centre; Dr Shanmugham V and Dr Sushil Kumar I, for conducting the statistical analysis.

References

